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A quantitative theoretical model is developed to describe the time-dependent draining 
of an initially uniform-thickness fluid squeeze film between an infinitely flexible 
membrane-bound fluid cell and a planar rigid surface or between two symmetrically 
loaded cells subject to impulsive loading. The solution of the coupled nonlinear 
membrane-fluid-film equations shows that two characteristic times and lengthscales 
are required to describe the membrane deformation and draining behaviour of the 
fluid film. The early-time behaviour is strikingly different from that predicted by 
elastohydrodynamic squeeze-film theory (Christensen 1962), where the local elastic 
deformation of the boundary is not controlled by membrane tension but is pro- 
portional to the local film pressure. While fluid trapping occurs in both cases, a bi- 
directional flow is set up during the early-time period in the membrane squeeze film 
owing to the establishment of an off-axis pressure maximum near the edge of the near- 
contact area. Fluid is driven radially inward, causing upwelling of the membrane in 
the central region, and driven radially outward near the edge of the contact area., 
causing this region to  form a narrow fluid gap. After the narrow-edge region hasformed, 
the off-axis pressure maximum gradually disappears and is replaced by a pressure 
plateau in the interior and a radial outflow at all locations that is similar to the elasto- 
hydrodynamic squeeze film. The present problem is closely related to the fluid films 
studied by Hartland (1967,1968,1969), Jones & Wilson (1978) and others when a, small 
spherical particle or fluid droplet rises or settles under gravity towards a uniform- 
tension fluid-fluid interface. These studies have theoretically and experimentally 
examined the long-time drainage of the film after the narrow edge region has formed 
and the fluid-trapping phenomenon is established. The solutions to the initial-value 
problem described herein show how this asymptotic quasi-steady drainage state is 
reached. 

A simple experiment has been constructed to confirm qualitatively the theoretically 
predicted short-time behaviour. Experimental photographs graphically illustrate the 
gradual thickening of the lubricating layer near the origin and the formation and 
draining of the edge region as predicted by the membrane squeeze-film theory. 

1. Introduction 
The time-dependent draining of a fluid film between a rigid planar surface and a 

highly flexible membrane-bound fluid cell or between two membrane-bound fluid cells 
is a problem of fundamental interest both to the engineer and the physiologist. One 

t Present address: Union Carbide Corporation, Bound Brook, New Jersey 08805. 
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frequently encounters situations where biological cells come in contact with relatively 
inelastic boundaries (micropipette experiments with red cells, entrance of red and 
white cells in capillaries and microscopic slide preparations of single cells) or with each 
other (consolidation of soft tissue, the centrifuging of cellular preparations and the 
formation of red-cell rouleaux), where the fluid film adjacent to the membrane ex- 
periences a time-dependent draining. On a larger scale this phenomenon is seen when 
one inserts a soft contact lens on the relatively inelastic corneal surface. Four related 
engineering applications include a large bubble rising owing to buoyancy against a 
solid‘boundary, a thin-walled balloon tire resting on an air or fluid film or a balloon 
settling on a solid surface, and the gravitational motion of small particles and droplets 
towards a deformable fluid-liquid interface. 

While there has been no previous theory that specifically examines the time- 
dependent draining of a fluid film beneath membrane-bound fluid cells that support 
negligible bending moments, there is extensive literature on the time-dependent 
squeezing ofa fluid film between linearly elastic surfaces, the steady-state deformation 
of these surfaces when in relative motion, and the draining of fluid films adjacent to 
deformable fluid-liquid interfaces. 

The first paper to analyse rigorously the transient elastohydrodynamic interaction 
encountered in the normal approach of elastic solids separated by a lubricating film is 
attributed to Christensen (1962). In  this work the elastic solids were circular cylinders 
and the approach was along a line joining their centres. Such motion is frequently 
encountered in gears and rotating machine elements. The displacement of the elastic 
surface is linearly related to local pressure between elastic elements. Lee & Cheng 
( 1973) improved on Christensen’s theory by removing the numerical convergence 
difficulties at small film thicknesses and incorporating the effect of deformation rate. 
Both papers deal with the hard elastohydrodynamic range (where elastic modulus of 
materials are sufficiently high that the lubricant pressures developed within the lubri- 
cating layer are large enough to alter the lubricant viscosity substantially). A more 
recent paper by Rohde, Whicker & Browne (1976) treats the problem of elastohydro- 
dynamic squeeze films in the soft range, where large deformations occur at low lubricant 
pressures. In  the latter paper the deformation of the elastic element is also linearly 
related to the local pressure. Christensen’s original work in the hard elastohydro- 
dynamic range was extended in two other papers (Christensen 1970; Herrebrugh 1970), 
while the treatment of the soft range has received more recent attention (Gaman, 
Higginson & Norman 1974; Roberts 1974; Browne, Whicker & Rohde 1975; Whicker, 
Browne & Rohde 1976). 

The steady-state hydrodynamic deformat,ion of elastic or fluid-filled bodies sepa- 
rated by a fluid film has been widely studied in connection with the theory of compliant 
surface bearings (Dowson & Higginson 1960; Castelli, Rightmire & Fuller 1967; 
Benjamin 1969), the passage of bubbles and fluid droplets through tubes (Bretherton 
1961; Davis & Taylor 1949; Goldsmith & Mason 1962; Cox 1962; Hyman & Skalak 
1970) and the motion of red cells through capillaries (Prothero & Burton 1961, 1962; 
Barnard, Lopez & Hellums 1968; Lee & Fung 1969; Hochmuth, Marple & Sutera 
1970; Sutera et al. 1970; Seshadri et al. 1970; Lin, Lopez & Hellums 1973). We shall 
describe further the two latter applications since the modelling of the fluid cell is 
directly related to the present study. Membrane-bound fluid cells have been alter- 
natively modelled as elastic pellets, liquid droplets or fluid-filled sacs whose membranes 
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do not support bending moments. In the first treatment Lighthill (1968) and Fitz- 
Gerald (1969) examined the steady-state parallel motion of an elastic pellet through a 
closely fitting fluid-filled tube. These papers were the first to attempt to predict the 
deformation of a red cell as it passes through a capillary whose dimensions are of the 
same order or smaller than the undeformed red cell. The deformation of the pellet is 
assumed to be a linear function of local film pressure, as assumed in the previously 
mentioned elastohydrodynamic squeeze-film studies. More recently Tozeren & Skalak 
(1979) have examined the Lighthill and Fitz-Gerald analysis to correct for the pressure 
singularity that occurs in the vicinity of the point of minimum gap width, and have 
applied this improved theory to model the motion of white cells translating along the 
axis of a tube (Tozeren & Skalak 1978). The elastic deformations are of order five 
per cent to ensure the validity of the linear theory of elasticity. The validity of a 
linear deformation law for red cells has been critically questioned (Lee & Fung 1969; 
Skalak 1972), since the thin-walled red-cell membrane does not support significant 
membrane-bending stresses and is filled with an incompressible fluid. 

A more appropriate model for the deformation of a highly deformable fluid-filled 
membrane-bound body is one where the instantaneous shape is related to the local 
variations in membrane tension and curvature, and membrane-bending moments can 
be neglected. In  this context, previous studies of the deformation of a bubble or liquid 
droplet interacting with a boundary in the creeping-motion regime are of interest. 
Bretherton ( 1961) has modelled the pressure-induced deformation of a bubble trans- 
lating along the axis of a rigid tube. Hyman & Skalak (1970) have similarly developed 
a model for a periodic array of bubbles moving along the axis of a tube in the low- 
Reynolds-number limit. In both these studies the flow is steady, the surface tension is 
constant and one seeks a single steady-state equilibrium configuration for the shape 
of the deformed bubble. These surface- tension problems in bubble dynamics differ 
from membrane-bound bodies in that there is a continuity of tangential stress at the 
interface. The treatment of the membrane that most closely parallels the present 
analysis is the study by Barnard et al. (1968). These authors modelled the red cell in a 
capillary as a membrane-bound fluid with negligible bending resistance. The steady- 
state membrane shape was obtained by allowing the pressure difference across the 
membrane to be taken up by local variations in tension and curvature. Unlike the 
surface-tension problem for bubbles, the membrane tension is not constant but is 
allowed to vary as a function of the integrated fluid shearing stress on the cell surface. 

There have been numerous theoretical and experimental investigations of the 
draining of a fluid film in foam and emulsion systems and in studies of droplet 
coa1escence.t Princen (1963) determined the outer solution for the contact angle of a 
spherical droplet resting under its own weight a t  a fluid-liquid interface. Most relevant 
to the present theoretical model are the studies of Hartland (1967,1968,1969), Jones & 
Wilson (1978) and Dimitrov & Ivanov (1978) on the approach of a spherical particle 
or droplet to a fluid-liquid interface. In  these problems the interface deforms to lowest 
order to the shape of the particle or droplet and establishes a thin lubricating layer in 
which the local pressure forces driving the fluid in the film are balanced by small 
changes in the tension-curvature relation for the interface. As first demonstrated by 
Hartland the long-time draining of the film is associated with a trapping of fluid in 

t The authors wish to thank one of the referees for bringing this literature on fluid-liquid 
interfaces to their attention. 
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FIGURE 1. Schematic representation of the spatial distribution of variables for elastohydro- 
dynamic squeeze-film theory: (a) h w8. r ;  ( b )  P w8. T ;  (c) 2)s. T.  

the inner region of the film caused by the formation of a narrow fluid gap near the edge 
of the near-contact area. The fluid flow through the edge region and the shape of the 
gap adjust such that at each instant in time the pressure drop between the inner 
region of trapped fluid and the lower-pressure external fluid just balances the viscous 
losses in the gap, The basic long-time behaviour is qualitatively the same whether the 
flow in the gap is a plug flow corresponding to two fluid interfaces, with a continuity of 
shearing stress at each kterface, or a parabolic profile for a solid surface and one 
interface. The boundary conditions for the latter problem are the same as for the fluid 
film between two abutting membrane-bound fluid cells in the present paper. The paper 
by Jones & Wilson uses the same asymptotic large-time approximation introduced in 
3 2.3, although the authors were not aware of this earlier analysis and that closed-form 
expressions could be derived for the drainage rate. While the fluid-trapping pheno- 
menon has been known for more than a decade, the initial-value problem describing 
the detailed sequence of events leading to the quasi-steady trapping configuration is 
still largely unknown. The solution to this problem, which occurs during the very early 
stages of the film drainage, is the principal objective of the present investigation. 

Although the deformation of the elastic solid in elastohydrodynamic squeeze-film 
theory is somewhat similar to the early-time deformation of the membrane in the 
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FIQURE 2. As figure 1, but for membrane squeeze-film theory. 

membrane squeeze- film theory in this work, there is an intriguingly different behaviour 
for both the pressure and flow fields during the early stages of the development of the 
lubricating film. Curiously, the pressure distribution and flow behaviour for the elasto- 
hydrodynamic film qualitatively parallels the membrane squeeze films for large times 
when the shape of the inner region is significantly different. Figures 1 and 2 are 
schematic illustrations comparing qualitatively the film thickness h, pressure P and 
volume flow rate Q in elastohydrodynamic and membrane squeeze-film theory. 
Figures 1 (a-c) show typical profiles obtained in elastohydrodynamic squeeze film 
theory a t  small film thicknesses for the case where the indenter is a circular cylinder 
whose planar front surface approaches another planar surface with an intervening 
fluid film. As seen from figures 1 (a, b) the maximum pressure occurs at the point of 
maximum film thickness. Figure 1 ( c )  shows a positive outward flow rate increasing 
with distance from the origin. Figures 2(a-c) are qualitative sketches for the same 
variables, as predicted by the membrane squeeze-film theory presented herein, where 
the membrane-bound body is initially an axisymmetric shape similar to an applanated 
fluid cell. Two sets of curves are shown, t, < t,t and t,  B tc t ,  where t,t is the charac- 
teristic time to trap fluid in the inner region of the near-contact area. For the membrane 
squeeze-film theory a pressure maximum quickly forms (t < t , t )  near the edge of the 
near-contact area and there is flow inward from this point. The curves for t,  < t,t in 
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figures 2(u-c) are representative profiles for the timescale tct during which the edge 
region is established and the fluid trapping occurs. As time increases, the pressure peak 
near the edge region eventually disappears and the inflow of the fluid will vanish. For 
large times t, 9 tct the pressure peak associated with the fluid trapping is replaced by 
a pressure plateau in the central region and a monotonically decreasing pressure in the 
edge region. This pressure profile produces an outward positive volume flow rate for 
all radii which slowly drains the trapped fluid in the interior on a much longer timescale, 
as shown by Hartland. The two geometric parameters of importance for fluid cells are 
the radius of the near-contact area and the radius of curvature of the static outer 
region. Numerical solutions are obtained for various aspect ratios of the radius of 
curvature of the static outer region to the radius of the near-contact area. 

The formulation of the theoretical problem is presentedin $ 2. An order-of-magnitude 
analysis is performed in $2.1, which deduces the two characteristic times for the 
membrane-deformation and fluid-draining behaviour. The motivation for the inner- 
and edge-region approximations is an outcome of this order-of-magnitude analysis. 
The treatment of the edge region is discussed in $$2.2 and 2.3. A description of the 
numerical solution procedure is given in $2.4, while $ 3 discusses the results. In $ 4  an 
experiment confirming the bidirectional flow behaviour during the early period 
following the application of the load is discussed. 

2. Formulation 
Consider the transverse motion of the membrane boundary of a fluid-filled cell that 

squeezes out the fluid film adjacent to a rigid planar surface. A constant load F is 
impulsively applied to the cell’s upper surface, as shown in figure 3, which induces a 
uniform pressure Pc both inside the cell and initially in the fluid film.? The difference 
in pressure across the membrane is related to the membrane tension and local mem- 
brane curvature that result from the motion of the fluid after the initial loading. The 
inikial shape for the cell is an axisymmetric body with a plane boundary, parallel to 
the rigid surface, and a circular edge (much like a balloon squeezed between parallel 
plates).: The initial film thickness h(r, 0) is thus assumed constant and chosen to be 
two or more orders of magnitude smaller than the cell radius. 

t The initial pressure and film-thickness profile for a bubble or liquid droplet moving toward 
a fluid-liquid interface and an impulsively loaded cell differ substantially. For the impulsively 
loaded cell the pressure in the fluid film a t  the origin instantly rises to the cell pressure and 
the membrane curvature vanishes. The membrane applanates radially and the fluid is expelled 
by the steep pressure gradient at the edge of the expanding near-contact area. This process stops 
when the applied load P is equal to %A, where A is the near-contact area after the loading is 
completed. The initial profile after loading is a top-hat function with a uniform initial thickness 
equal to the film thickness at the origin when the load is applied. This behaviour is easily observed 
in the simple balloon experiment described at the end of the paper. For a small bubble or liquid 
drop moving toward a boundary under the influence of gravity the droplet-film interface evolves 
as a slow departure from an initially spherical shape. 

1 For a non-distensible membrane the cell geometry before loading is either that of a finite 
disk with rounded edges or a circular bag formed from two planar sheets that are sealed at  their 
edges. It cannot be a spherical shell since this would buckle inward forming a spherical dimple 
with negligible tension in t,he interior and a hoop tension along the ring of contact. For a highly 
distensible membrane, such as a rubber balloon, the initial shape can be spherical. Here we shall 
require that the incremental deformation in the applanated area be small compared with the 
initial stretching of the membrane due to its inflation. Under these conditions the membrane 
tension in the near-contact area will be nearly uniform. 
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FIQURE 3. Geometry for the membrane squeeze-film theory. 

For a film thickness h that is two or more orders of magnitude smaller than the 
near-contact radius a and a vorticity diffusion time h2/v that is much less than the 
characteristic time for the draining of the film, the flow field may be aasumed quasi- 
steady with a temporally and spatially varying film thickness. The fluid film is 
regarded as incompressible and radially symmetric so that the continuity and radial 
momentum equations are 

( 2 . 2 ~ )  

where P is the fluid pressure, u and w are the fluid velocity components in the radial 
and axial directions respectively, and p is the fluid viscosity. 

If the term u / r 2  in ( 2 . 2 ~ )  is replaced by its expression from (2 .1 )  and the approxi- 
mations made that w < u and alar < a/az in the resulting expression for the viscous 
stress, one obtains 

(2 .2b )  

Similarly, for the axial component of the momentum equation we assume that the 
fluid pressure is constant across the film thickness: 

ap 
a Z  
- = 0. 

According to (2 .3 )  pressure is not a function of z, so that the velocity u may be 
obtained by integrating (2 .2b )  twice. Applying the no-slip boundary condition at the 
planar surface z = 0 and at the membrane boundary z = h(r, t )  yields 

( 2 . 4 ~ )  

where h ( r , t )  is the time-dependent film thickness. For the problem of two cells 
squeezing out a fluid film between them, with the midplane between cells at z = 0 and 
Qh the distance from midplane to either cell, the equivalent expression to ( 2 . 4 ~ )  that 
satisfies the symmetry condition at  z = 0 yields 

u = - -  a p [ z 2 - ~ h 2 ( r , t ) ] .  
2p ar (2 .4b)  
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The flow rate Q is obtained by integrating ( 2 . 4 a )  or (2 .4b)  over the area normal to the 
flow direction. Equations ( 2 . 4 ~ )  and (2 .4b )  give the same results for the flow rate: 

n ap 
Q = - - r -h3(r , t ) .  

6 p  ar 
(2 .5a )  

If the membrane-bound cell were replaced by a large bubble pressing against a rigid 
planar surface perpendicular to the direction of gravity the no-slip boundary condition 
at the interface would be replaced by 

if the viscosity of the air was neglected. Equation ( i . 5 ~ )  would then be replaced by 

(2 .5b)  

The continuity equation (2 .1 ) ,  when multiplied by 2nr and integrated across the 

2nJ;T . l )  - 7; dz = - 2nrw(h). ( 2 . 6 ~ )  

Applying the Leibnitz rule for differentiating an integral with variable limits, intro- 
ducing the definition of Q and replacing the fluid velocity w(h) by the local membrane 
velocity ah/& one has 

film thickness, gives 

(2 .6b)  

The tangential force balance in the plane of the membrane in the near-contact area 
requires an equilibrium between the fluid shearing stress T in the radial direction and 
the membrane tensions a, and a, in the radial and azimuthal directions: 

(2 .7a)  

For a fluid cell whose initial geometry conforms to one of the configurations described 
in the footnote at the beginning of this section, it is reasonable to assume that the 
membrane tension after loading is isotropic in the near-contact area, that is 

(7, = a, = (7.f 

Also the fluid shearing stress can be simply related to the fluid-film pressure by taking 
a force balance on a cylindrical fluid shell of thickness dr whose height varies as the 
local film thickness. Equation ( 2 . 7 ~ )  becomes 

(2 .7b)  

The normal force balance for a membrane undergoing small deformations which 
offers no bending resistance but is subjected to an isotropic tensile stress produced 

t Note that u is not constant beyond the edge of the near-contact area, but varies in accord- 
ance with Laplace’s law with two finite orthogonal radii of curvature. In the near-contact 
region the membrane is similar to an isotropic tension membrane on a circular drum. 
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by a distributed axisymmetric pressure loading can be written as (see e.g. Hildebrand 
1976, p. 459) 

where Pc is the uniform internal cell pressure and P(r, t )  is the instantaneous local 
film pressure. Equation (2 .8)  is valid for arbitrary axisymmetric small-amplitude 
membrane deflections in which inertia effects are negligible. 

Equations (2.5)-( 2.8) differ from the formulation of elastohydrodynamic squeeze- 
film theory (Christensen 1962; Rohde et al. 1976) in that (2 .7 )  and (2 .8)  relating the 
pressure and membrane tension replace the pressure-induced elastic-deformation 
relation for a linearly elastic solid. Equations (2.5)-(2.8) provide four coupled non- 
linear equations for &, P, v and h. 

The boundary conditions on (2.5)-(2.8) are 

-- ah(oyt) - 0,  Q ( 0 , t )  = 0, 
ar 

a2h(a,t) 1 
P(a,t) = Pe, - = - 

ar2 R’ 

(2 .9a ,  b )  

(2.9c,  d )  

u(a, t )  = r e  = (Pc - Pe) R, (2 .9e)  

where a is the radius of the near-contact area, Pe the constant exit pressure, R is the 
constant radius of curvature of the static outer region and ve is the membrane tension 
at  the edge of the near-contact area. 

The boundary condition ( 2 . 9 ~ )  is the symmetry condition of the highly flexible 
membrane, and (2 .9  b )  represents the vanishing flow rate a t  the origin of the lubricating 
film. The pressure boundary condition at r = a ( 2 . 9 ~ )  requires the film pressure to 
reach the value of the constant exit pressure at  the edge of the cell. The boundary 
conditions (2.9d-e) represent the requirements that the membrane returns to the 
curvature of the static outer edge and the membrane tension be continuous with the 
tension developed in the static outer edge. Equation (2 .9e)  is Laplace’s law applied 
at  the edge of the near-contact area where the radius of curvature in the azimuthal 
plane normal to the membrane is assumed to be much larger than R. The initial 
condition is 

h(r,O) = h,. (2.9.f 1 
This is a suitable initial condition for an impulsive loading of the cell where the initial 
thickness distribution is nearly uniform. 

To simplify the boundary-value problem defined by (2 .5) - (2 .8)  and the boundary 
conditions (2 .9)  we shall first perform an order-of-magnitude analysis to identify the 
important time- and lengthscales in the problem. 

2.1. Order-of magnitude analysis 
For a cell that has an edge radius of curvature R, the tension force u is of order 
(Pc -Pe)R, where Pe is the constant exit pressure, taken to be zero. As discussed in f 1 
two different time- and streamwise lengthscales characterize the draining of the near- 
contact area. The two streamwise lengthscales are the radius a of the near-contact 
area, which is also the characteristic length of the central region of the film, and the 
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characteristic length 7 of the edge region. Since the pressure difference across the edge 
region is of order pc and the tension force is of order pc R, one concludes from (2.8b) 
that if a2h/8r2 is approximated by h/q2 then 

r O((Rh)*). (2.10) 

The pressure driving force that is felt across the edge region is of order pc on both 
the short and long timescales. The principal difference, as illustrated in figure 2, is that 
on the short timescale there is a non-vanishing negative pressure gradient in the central 
region as opposed to the pressure plateau that is established for large time. From 
(2.5b) the flow through the edge region is of order 

Q = 0 (Papc:), (2.11) 

where @ = lr/6,u. During the early-time period, h in the edge region is of the order of the 
initial thickness h,, which in general is much larger than the edge-region film thickness 
he after fluid trapping has occurred. Combining (2.10) and (2.1 l ) ,  one concludes that 
Q is proportional to ht. 

We shall first deduce the characteristic time for the collapse of the edge region. Since 
the flow bifurcates about the pressure maximum, Q is zero at the maximum, which lies 
just interior to the p = p c  location, and the radial gradient of the flow in the edge 
region is of order Qlq. From (2.6b) the characteristic time tc t  for the edge-region 
formation is 

Substituting (2.10) and (2.11) for 7 and Q into (2.12), one obtains 

t c t = O ( - )  R = o(-). r2 
PPcho PPC h20 

(2.12) 

(2.13) 

To gain understanding of the meaning of (2.13) consider a rigid plate with a flat 
blunt edge of thickness q approaching a planar surface separated by a fluid film of 
thickness h,. The fluid is drained from the gap by pushing the blunt-edged plate with 
a constant force F per unit width toward the planar surface. The average pressure p c  
on the edge of the plate is given by F/7.  One can easily show for this rigid geometry 
that the characteristic time for the draining of the film is 

(2.14) 

which is the same as (2.13). One concludes that the collapse of the edge region behaves 
very much as if the edge of the near-contact area were a two-dimensional rigid indenter. 

Let us now deduce the Characteristic time for the draining of the trapped fluid in 
the central region of the film. The flow Q through the edge region is now not generated 
by its own collapse, but by the drainage of fluid in the interior. The flow gradient in 
the central region is of order &/a. From (2.6b) the characteristic time t c d  for draining 
the central region is 

(2.15) 
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where h, is now the thickness of the central region of the film. Substituting (2 .11)  in 
(2 .15) ,  one has 

(2 .16)  

where h in (2 .11)  is now the collapsed edge height he. The ratio of the draining time 
(2 .16 )  to the trapping time (2.12) is of order ahg/qhg. In  the numerical computations 
presented later in this paper this ratio is of order 1 0 3  or larger. 

Implicit in the foregoing order-of-magnitude analysis is the assumption that the 
fluid shearing stresses are a higher-order correction to the membrane tension. From 
(2 .7b )  acrlar is of order hopc/a in the central region and order hepclq in the edge 
region. Introducing the characteristic length (2 .10)  for q in the latter expression, one 
concludes that the edge-region tension gradient is of order ( h e / R ) ) .  Thus in either case 
the membrane tension is uniform to lowest order in the near-contact area. Thus (2 .7b)  
will be approximated by 

aa - = 0 (r <a) ,  
ar 

(2 .17)  

where u is given by its value determined from the edge condition ( 2 . 9 ~ ) .  To this same 
order (2 .8 )  will be approximated by 

(2 .18)  

The approximation (2 .17)  thus reduces the problem to the solution of ( 2 . 5 a ) ,  (2 .6 )  
and (2 .18)  for the variables h, P and Q .  

The existence of a small region in which the pressure is changing rapidly and a 
considerably larger region in which the variables are changing slowly is conducive to 
a two-region approximation of the near-contact area. The full non-dimensionalized 
form of (2.5 a ) ,  (2 .6)  and (2 .18)  will be solved for the inner region, whereas for the smaller 
edge region an approximate integral formulation will be developed. 

Equations ( 2 . 5 a ) ,  (2 .6 )  and (2.18) are now non-dimensionalized using the following 
definitions : 

(2 .19a ,  b )  

(2 .19c ,  d ,  e )  

If  one drops the * notation, for convenience, the non-dimensional equations are 

Q = -  r-h3, a p  
ar 

(2 .20a)  

(2 .21a)  

(2 .22a)  
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where R1 is the non-dimensional aspect ratio of the cell (ratio of radius of curvature of 
the outer region to radius of the near-contact area). 

The beginning of the edge region is arbitrarily chosen as the unknown location where 
P = 1. This choice is convenient since the left-hand side of ( 2 . 2 2 ~ )  vanishes at this 
location and thus provides convenient matching conditions for the edge profile. The 
inner region is the bulk of the near-contact region and terminates at  r = 1 - qe(T), 
where r e (  T) is the time-dependent edge-region size, This inner-region-edge-region 
interface is approximated to be at  r = 1 on the inner lengthscale because the com- 
puter program for the numerical solution of the inner region requires a fixed length. 
This approximation is consistent with the method of asymptotic expansions, where 
the larger scale is kept constant and the smaller scale is allowed to vary. The boundary 
and matching conditions for the inner region are 

-- ah(o, T I  - 0, h( 1, T) = Ho(T) ,  
ar 

P(1,T) = 1,  Q(0,T)  = 0. 

H(r ,  0) = 8, P(r, 0 )  = 1, 
The initial conditions are 

(2.23a, b) 

(2.23c, d )  

(2.24 a, b) 

Q(r,  0) = 0, &(O) = € 3  (2.24c, d )  

where Ho(T) is the time-dependent film thickness a6 the interface of the two regions. 
The value of Ho(T) is obtained by matching the solutions from the inner and edge 
regions a t  each instant in time. 

2.2. Treatment of the edge region 

For the edge region (figure 4) a new coordinate 7 is defined as 

7 = r -  1 (1  < r < 1 +ye(T) ) .  (2.25) 

Using the above definition, the governing equations (2.20a), ( 2 . 2 1 ~ )  and ( 2 . 2 2 ~ )  may 
be rewritten as 

ah _ -  - -2n(1+7)-,  aQ 
a7 aT 

a 
( l + v ) ( l - P )  = RZ- ar 

(2.20 b) 

(2.21 b) 

(2.223) 

The mathematical description of the edge region can be simplified by using an approxi- 
mate integral formulation. A polynomial profile for pressure is assumed in the edge 
region, 

P ( 7 , T )  = C1+C2r+C372, (2.26) 

which satisfies the following matching and boundary conditions : 

P ( 0 , T )  = 1, - T, - - ,Fov(T), 
ar 

(2.27 a, b) 
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FIGURE 4. Geometry for the edge region of the near-contact area. 
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where Po,(T) is the pressure gradient.at the interface of the two regions obtained from 
the inner-region solution at  r = 1 .  The resulting expression for P(7, T) is given by 

where 
(2.28) 

(2.29) 

The membrane profile in the edge region is obtained'by integrating the normal force- 
balance equation (2 .223)  twice using the pressure profile from (2.28).  The resulting 
expression contains two coefficients, which are found by using the following interface 
matching conditions: 

h(r = 1,T) = Ho(T) = h(7 = O,T), ( 2 . 3 0 ~ )  

ah(r = 1,T)  ah(7 = O,T) 
ar a7 ' 

= H o p )  = (2.30 b )  

where Ho(T) is the interface-film thickness and Ho,(T) is the membrane slope at the 
interface. The edge-region membrane profiie can then be written as 

h(r], T) = Ho(T) + Ho,(T) In (1 + 7) 

Using a Taylor-series expansion for In (1 +.7), where r ]  < 1 ,  ( 2 . 3 1 ~ )  may be approxi- 
mated by 

7 0 )  
h(7 ,  T) = Ho(T) + HO,(T) [7 - 4s21 - 7 pov(T) [&q3 - &q4] + (&q4 - 677. 

(2.31b) 

Since r] < 1 the local membrane velocity in the edge region is approximated by 
(neglecting terms of order q2 or higher) 

(2 .32)  
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The volume-flow-rate distribution in the edge-region film may be obtained by 
integrating the continuity equation (2.21 b )  and using the result of (2 .32) :  

~ ( 7 ,  T) = - 2nk0m PI + ta21 - 2 n f i O q m  [ir2 + 4q31, (2.33) 

where the value of the interface volume flow rate evaluated at  r = 1, Q,(T) is obtained 
from the solution of the inner region. 

The momentum equation (2.20 b )  is now satisfied in integral form. Substituting (2.33) 
into (2 .20b) ,  integrating the latter across the edge region and applying the pressure 
boundary conditions (2 .27a ,  c ) ,  one finds 

1 = - 2nH0 Il + Qo I, - 2nHOB 13, 
where 

(2 .34)  

( 2 . 3 5 ~ )  

(2.35 b )  

( 2 . 3 5 ~ )  

Equation (2.34) is treated numerically as an ordinary differential equation to deter- 
mine H,(T), with instantaneous values of Q,(T) and fiOg(T) considered known from 
the inner-region solution at  r = 1 evaluated at the previous time step. 

At this point the value of qe(T) is not known but can be obtained by requiring that 
the momentum equation (2 .20b)  be satisfied exactly at  7 = Te(T). This has the effect 
of ensuring that the pressure gradient a t  the edge-region exit provides a volume flux 
that is compatible with the expression (2 .33)  evaluated at r e .  Substituting the 
relation for the unknown interface-membrane velocity ko(T) from (2.34) into (2 .33)  
and inserting the latter into (2 .20b) ,  one obtains 

Q,(T) - 2nkoq(T) [&g(T) + #73,(T)] - + * V W )  [Q,(T) I, - 1 - 2nkoq(T)  13] 
I,  

where he(T) is the film thickness at 7 = qe(T) from (2 .31) .  Equation (2 .36)  is an integral 
equation for re(T) since the limits on the integrals 11, I ,  and I3 dehed  by (2 .35)  are 
functions of Te(T). The solution of (2 .36)  at each time step is accomplished by a 
numerical trial-and-search procedure described in 5 2.4. 

2.3. Asymptotic theory for large time 

The numerical solutions presented in 53 reveal that for very large times, after the 
fluid-trapping phase is completed and the fluid draining is well established, the pressure 
plateau extends over most of the near-contact area and the volume flow through the 
edge region is nearly independent of position and is a slowly varying function of time. 
These two observations allow one to significantly simplify the description of the 
inner- and edge-region flows for large time, as first deduced by Jones & Wilson (1978).  
These authors used physical arguments to support their contention that the long-time 
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behaviour is insensitive to initial conditions. The asymptotic analysis in this section 
closely parallels that given in this last reference. 

In  contrast to $2.3 ,  where the interface between the inner and edge regions was 
chosen for convenience to be at the radial location where P is equal to unity, we now 
redefine this interface to be the edge of the region where the radial pressure gradient 
nearly zero. For computational purposes this is taken to be at  the location where the 
local value of h is approximately ten times the minimum gap height, since the local 
pressure gradient, which vanes as h-3, is of order 10-3 less than the characteristic 
edge-region gradient at this point. 

In  view of the foregoing remarks, the large-time approximation for the inner region 
will neglect ( 2 . 2 0 ~ )  (this is equivalent to treating the trapped fluid in this region as a 
constant-pressure reservoir) and consider the pressure in ( 2 . 2 2 ~ )  as a slowly varying 
function of time P,(T). Equation ( 2 . 2 2 ~ )  can now be integrated twice and the boundary 
condition ( 2 . 2 3 ~ )  applied. The membrane displacement in the interior is given by 

r2 
h(r,T) = h(O,T)+- (1 -8 )  (r < T i ) ,  

4R1 
(2.37) 

where ri(T) is the edge of the pressure plateau as defined above. Equation (2.37) is the 
approximation for a spherical cap in uniform loading inder constant tension. When the 
result (2 .37)  is substituted in (2.21 a )  and the latter integrated subject to boundary 
condition (2 .24c) ,  one finds 

(2 .38)  

Since the volume of fluid in the edge region is very small compared with that 
trapped in the interior for large times, continuity considerations require that the 
volume flow through the edge region be nearly equal to that exiting from the interior 
at the interface ri. Equation (2 .21b)  can therefore be replaced by the approximation 

Q(7, T) = Q(ri, = Qo(T), (2 .39)  

and this simplification also introduced into (2 .20b) .  Equation (2.223) can now be 
differentiated with respect to 7 and the expression for aP/aq obtained from (2 .20b) .  
This leads to an ordinary differential equation for the edge-region profile: 

(2.40) 

Equation (2.40) in the limit 7 < 1 is equivalent to equation (2 .9 )  of Jones & Wilson 
(1978) .  

The pressure distribution in the edge region is obtained by integrating 

(2 .41)  

subject to the boundary conditions 

P(0,T)  = (7 = 0) (2.42) 

and (2 .27) .  The boundary conditions for (2.40) are obtained by requiring that h and 
its first two derivatives be continuous at r = ri or = 0. 
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Equation (2.38) when evaluated at r = ri contains two unknowns dh(O,T)/dT and 
dP,/dT. Since the length of the inner region varies only slightly, we shall assume for 
the purposes of relating h(0, T )  and 4 that the projected location ro where the circular 
arc (2.37) touches the planar surface does not change with time. Thus from (2.37) 

(2.43) 
r2 

h(0, T )  = 0 (P,(T) - 1) .  
4Rl 

When (2.43) is substituted into (2.37) the resulting expression for the film thickness h 
is of the form of equation (2.10) of Jones & Wilson (1978). 

Substituting (2.43) into (2.38) and evaluating at ri, one obtains: 

(2.44) 

The solution of the boundary-value problem for the coupled system of ordinary 
differential equations (2.40) and (2.41), where Qo is given by (2.44), involves split 
boundary conditions. Equation (2.40) is first integrated for a trial value of dP,/dT to 
determine h(7, T )  and then (2.41) is integrated using this h(q, T) distribution to the 
edge of the near-contact area, r = 1, where the edge condition (2.27) must be satisfied. 
Small adjustments in dP,/dT at each time step are required for this edge condition to 
be satisfied exactly. The solution for dP,/dT is then used to advance P, to the next 
time step. Equation (2.40) is now integrated using the latest value of Pi in the boundary 
conditions at 7 = 0 and a new trial-and-search routine started for dP,/dT. 

2.4. Numerical solution procedure 
The Rayleigh-Ritz-Galerkin method is used for spatial discretization of the inner 
region, and the solutions for the dependent variables are composed of a series of 
B-splines between spatial mesh points. This is accomplished with a partial-differential- 
equation code available from Bell Laboratories. The code package is called POST, and 
with the addition of supporting subroutines the solution of the ordinary differential 
equation (2.34) may be used as a boundary condition a t  the interface between the 
inner and edge regions. A detailed discussion of the code package appears in Schryer 
(1977). 

To start the numerical procedure the initial conditions (2.24) are set for the variables 
h, P,  Q and H,. For the first few time steps the value of 7e(T) is held constant owing to 
the singularity of (2.36) for 7 = 0. The value chosen for qe during this early period was 
arbitrarily chosen to be of order 6. The edge-region size grows in time from its initial 
value to the characteristic size given by (2.16). Following this start-up period (2.36) 
is interrogated at each time step to determine re(!!'). 

A typical iteration in time is advanced through (2.21a). Having established a new 
distribution for h(r,T), ( 2 . 2 0 ~ )  and ( 2 . 2 2 ~ )  are used to solve for the inner-region 
distributions of P and Q, subject to the boundary and matching condition (2.23). In  
order to satisfy the condition (2.23b) a subroutine containing the ordinary differential 
equation (2.34) is called. In this subroutine tentative values for ahlar, Q,  aP/ar and 
Ho,, at r = 1 are stored for use in determining 7e(T) for this iteration. Having computed 
a tentative value for qe(T) the numerical program evaluates the definite integrals, 
given by (2 .35~-c) ,  and (2.34) is solved for Ho(T). 

A comparison is made between the interface value of h obtained from the inner- 
region solution and from the ordinary differential equation (2.34). If agreement does 
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not meet the accuracy requirement imposed on the solution of all the variables the 
tentative time step is reduced and the iteration procedure is begun anew. When the 
accuracy requirement is met the time step is said to have been successful and the first 
iteration of the next time iteration is begun. 

Typically twenty or more evaluations of (2.34) are required for convergence on a 
successful time step in the early period of the numerical solution, and as few as three 
evaluations are required at large times. After the tolerances on the dependent variables 
havebeenmet the edge-region distributions are solvedforusein (2.28), (2.31) and (2.33). 

The numerical solution of the fluid-trapping phase requires approximately 30 min 
of computation time. The numerical solution to describe the long-time draining of the 
trapped fluid to roughly 30 % of its initial thickness at the origin takes approximately 
2 hours of IBM-370 computing time for a cell with an aspect ratio equal to 2.0. For 
decreasing values of the aspect ratio the computing time required to obtain a given 
degree of membrane collapse increases. The large amount of computer time is due to 
the complexity of the POST code package for solving the partial differential equations 
in the inner region of the near-contact area and the large differences in timescales of 
the fluid-trapping and draining phases of the motion. One observes from the results 
that the very-long-time asymptotic analysis developed in $2.3 becomes valid for 
characteristic times that are roughly two orders of magnitude larger than the time 
required for the film thickness at  the origin to have achieved its maximum value. At 
this time the uniform pressure plateau extends to nearly 90% of the near-contact 
area, and the edge-region approximation for Q in $2.3 is closely approached. The 
POST routine is now discarded and the changeover to the asymptotic solution pro- 
cedure implemented. 

3. Results and discussion 
The solutions to the governing equations developed in $2 are presented in non- 

dimensional form. The spatial variable r is renormalized with respect to the entire 
near-contact radius 1 + ~~(2'). This renormalization allows the change in interface 
location to be viewed from the perspective of a constant near-contact radius. Since 
time is normalized with respect to the fluid viscosity and the pressure difference across 
the outer-region membrane, the solutions at a given time may be compared for each 
case to see the influence that the cell's aspect ratio Rl has on the draining behaviour 
of the fluid film. The dimensionless initial film thickness E: used for all of the numerical 
solutions is equal to because this magnitude is representative of the film thicknesses 
seen in the applications mentioned earlier. Results for three values of the aspect ratio 
Rl, varying from 0.25 to 2.0, are presented herein. Additional numerical results can be 
found in Wu (1981). 

The graphs in figures 5 (a-c) show the solutions for the time-varying film thickness 
between a rigid planar surface and a membrane-bound cell with the aspect ratios 2.0, 
0.75 and 0.25. The solid dot on each curve in these figures indicates the location of the 
matching interface where P = 1. To obtain the membrane shape for the problem of a 
fluid film being squeezed between two membrane-bound cells figures 5 (a-c) would be 
replotted by halving the film thickness a t  any time T. The horizontal axis to the 
replotted graph would then be the plane of symmetry between the two cells. No 
replotting is necessary for the case of an air bubble pressing against a rigid planar 
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FIGURE 6. Pressure distributions in the fluid film: (a) RZ = 2;  ( b )  0.75; (c) 0.25. 

surface. The difference between this problem and the membrane-bound cell enters in 
the value ofp. For the membrane problem p = n/6,u, whereas for the bubble problem 
p = 2 ~ 1 3 ~ .  From the definition of the non-dimensional time 
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From the values of p for these two situations it is apparent that an air bubble under a 
solid surface will drain a fluid film four times faster than a membrane-bound cell 
under identical conditions (i.e. the same values of Pc-P,, R1, e and p).  Physically, 
this difference in draining time is connected to the boundary conditions a t  the cell 
and bubble surface. The interface between an air bubble and the lubricating film 
cannot support a fluid shear stress when the viscosity of air is neglected. The shear stress 
on the surface of a cell membrane tends to retard the fluid motion. The difference 
between a bubble and a no-slip surface was pointed out in Dimitrov & Ivanov (1978). 
The difference was manifested in their parameter n, which was equal to 1 for a bubble 
and 4 for a no-slip surface. 

For a cell aspect ratio equal to 2.0 the time histories of the film thickness and 
pressure distribution in the film are plotted in figures 5(a)  and 6(a) respectively. 
Because of the order-of-magnitude difference in fluid velocities that are generated 
during the fluid-trapping and fluid-draining phases of the membrane collapse, the 
results for volume flow rate are presented in two figures. For a cell aspect ratio equal 
to 2.0 the volume flow rate for this early period is plotted in figure 7 (a) and for longer 
times in figure 7 ( b ) .  

Each time curve in figure 5(a) is the instantaneous location of the cell membrane 
relative to the planar surface. This figure shows the membrane in the vicinity of the 
edge of the near-contact area collapsing much more rapidly than the membrane in the 
inner region, thus trapping a considerable volume of fluid in the inner region for 
dimensionless times less than 3.32 x lo4. Figure 6 (a) shows that the pressure in the 
fluid film decreases rapidly to the zero exit pressure in the edge region and that a 
pressure maximum is quickly established just interior to the inner-edge-region 
matching interface. The difference between the uniform internal pressure P, and the 
local film pressure controls the rate of collapse of the membrane. The fluid-trapping 
phenomenon is a consequence of the large membrane curvatures and pressure dif- 
ferences that can be developed near the edge of this near-contact area and will be 
examined in more detail below. 

One observes in figures 5(a-c) that as the edge region descends during the fluid- 
trapping phase t,he point of maximum convex curvature lies just interior to the 
inner-region-edge region interface. For a membrane under one- dimensional loading 
with uniform tension this point of maximum convex curvature would correspond 
to the position of maximum film pressure. For axisymmetric loading this corres- 
pondence between position of maximum pressure and convex curvature is altered 
slightly. The location of the pressure maximum also coincides with the location of the 
flow bifurcation point (see figure 7 a). The off-axis pressure maximum and the resulting 
bidirectional flow field during the fluid-trapping phase are not observed in elasto- 
hydrodynamic squeeze-film problems. This unique behaviour arises from the mem- 
brane tension-curvature relations (2.7) and (2.8). While fluid can be trapped in an 
elastohydrodynamic squeeze film in the sense that an edge forms as shown in figure 1 (a) 
and the maximum displacement of the elastic indenter occurs at the origin, the 
displacement at the origin decreases monotonically since the approach velocity of the 
indenter is much greater than its elastic-deformation velocity. The flow is therefore 
always directed radially outward. 

The radial influx of fluid due to the off-axis pressure maximum produces an upward 
displacement of the membrane between the origin and the flow-bifurcation point. As 
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FIGURE 7. Volume flow rate: RZ = 2; (a) t < tat; ( b )  t > tot. 

time increases, the bulge grows in amplitude and migrates to the origin, where the 
fluid thickness eventually achieves a maximum value at the end of the fluid-trapping 
phase. During this period of time the pressure peak diminishes in magnitude and 
migrates slowly toward the origin. The diminished driving force in the lubricating 
layer results in a decrease in the magnitude of the radial influx of fluid, which vanishes 
entirely when the pressure maximum reaches the origin (see figure 7 a ) .  

One also observes in figure 5(a) that the location of the inner-region-edge-region 
interface (P = 1.0) migrates toward the origin for times smaller than the time for 
fluid trapping. When the fluid trapping is complete the interface begins an outward 
migration, which must eventually approach the edge of the near-contact area as T 
approaches infkity. 

For a cell aspect ratio equal to 2-0 the origin film thickness reaches its maximum 
value at  T = 3.32 x lo4. For all later times the off-axis pressure peak is replaced by a 
characteristic pressure plateau over most of the interior that will be maintained for the 
duration of the draining process. Also at this time the negative volume flow rate has 
vanished (figure 7 b )  and the flow field begins to adjust to the downward velocity of the 
cell membrane near the origin. 

From this time on changes in the fluid film occur on a larger time scale. The film- 
thickness profiles in figure 5 (a )  show that it takes three or more orders of magnitude 
larger time to drain the trapped fluid than it took to trap it. The pressure plateau has a 
magnitude of 1-09 at the end of the fluid-trapping phase and three orders of magnitude 
later in time it still has an appreciable value of 1.03. As time increases the pressure 
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plateau both spreads radially and asymptotically approaches the uniform internal 
cell pressure P, for the entire near-contact area as T approaches infinity. 

The results for h, P and Q for cell aspect ratios 0.75 are presented in figures 5 (b ) ,  
6(b)  and 8(a, b )  and those for cell aspect ratio 0.25 in figures 5 ( c ) ,  6(c) and 9(a, b ) .  
A comparison of these results with the aspect-ratio 2.0 cell just discussed reveals that 
as the cell aspect ratio is decreased the magnitude of the pressure maximum becomes 
smaller and shifts closer to the edge of the cell. These changes cause the edge to collapse 
more quickly for the flatter cell, thus trapping a larger volume of fluid in the inner 
region. The larger volume of trapped fluid coupled with a smaller fluid driving force 
results in larger draining times for the flatter cell. This is clearly shown by comparing 
the film thickness at  the origin for cells of aspect ratio 2.0 and 0.25. At the time when 
the origin film has decreased to 57 yo of its initial value for a cell with aspect ratio of 
2.0, the flatter cell has drained its origin film to approximately 149% of its initial 
value from a maximum of 170%. Thus, the rate of draining is influenced in large 
measure by the aspect ratio of the membrane-bound cell as suggested by the order-of- 
magnitude analysis presented in 0 2. 

3.1. Experiments confirming the early-time behaviour 

The bifurcating flow behaviour of the fluid film during the early period following the 
initial application of the load has not been previously reported. A simple validating 
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experiment was therefore conducted to demonstrate the existence of this unusual 
fluid-film behaviour. 

A schematic representation of the apparatus used to confirm the existence of the 
bifurcating flow and the fluid-trapping phenomena is depicted in figure 10. An air- 
filled balloon is used as the model for a membrane-bound fluid cell and a glass plate 
serves as the rigid planar surface. The fluid film between the plate and balloon is a 
common vegetable dye. A motor-driven camera is mounted above the glass plate to 
capture the change in film thickness with time. The camera’s motor drive shoots four 
frames per second, which is sufficiently fast to capture the changes in film thickness 
because the characteristic time for fluid trapping is of order 5-10s for this experiment. 
The radius of the balloon is 7.6 cm and the position of the support blocks produces a 
near-contact area of 4.1 cm. The non-dimensional aspect ratio is thus equal to 1.84. 

The ballloon is coated with the vegetable dye and then the glass plate is dropped 
onto the supports. The balloon carries 0.9 kg of the plate’s mass and the support blocks 
the remainder of the load. At  the instant that the plate makes contact with the support 
blocks the fluid film is nearly uniform in thickness. 

Figure 11 shows the changes in the fluid film during the early period following the 
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FIGURE 10. Schematic representation of the membrane squeeze-film experiment. 

application of the glass plate. Photograph (a)  in figure 11 is taken at the instant the 
plate touches the support blocks. Here the contrast of the fluid film is almost uniform, 
indicating that there is a nearly constant film thickness. In photograph (b), after 0.25 s 
has elapsed, there is a light ring forming a t  the perimeter of the fluid film. This ring is 
the edge region and the light region is indicative of a narrowing gap between the plate 
and the balloon. The dark ring just outside the edge region is a reservoir of dye at 
the point where the balloon surface falls away from the glass plate. Photographs (c) 
and (d )  show the growth of the edge region with time. 

For this experimental run a small air bubble happened to lie in the edge region. As 
time passed the air bubble was forced toward the fluid meniscus at the border of the 
near-contact area, indicating a net decrease in film volume in the near-contact area 
and a radial outflow from the edge region. Another feature that can be seen in figure 11 
is the gradual darkening of the central portion of the near-contact area. This darkening 
is produced by the gradual thickening of the fluid film near the origin, which is pro- 
duced by the inward flow of dye predicted by the theory of $2.2. 

The gradual darkening in the central region of the fluid film can be more clearly 
demonstrated by performing an experiment in which the fluid film near the origin is 
initially depleted. This is accomplished by lightly pressing the plate against the 
balloon, producing a small near-contact area. One then allows the fluid to drain in this 
small area by holding the plate for several seconds. The plate is then released to form 
the larger near-contact area. Photograph (a )  in figure 12 shows the light spot sur- 
rounding the origin following the release of the plate. Photographs ( b d )  of figure 12 
show the gradual darkening of this area. These photographs clearly show an influx of 
fluid toward the centre of the lubricating layer. 
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3.2. Conclusions 

The membrane squeeze-film theory presented in Q 2 predicts the existence of an off-axis 
pressure maximum. and a bidirectional flow in the fluid film for times less than the 
characteristic time for fluid trapping. This early-time behaviour is easily observed in 
a simple experiment with a balloon, glass plate and vegetable dye. The experimental 
photographs clearly illustrate the presence of the bidirectional flow in the dye fol- 
lowing the application of the plate. This behaviour appears to be unique to membrane 
squeeze-film problems. The linear elastic deformation law for elastohydrodynamic 
squeeze-film problems and the tension-curvature relations for inhitely flexible 
membrane-bound cells have been shown to produce strikingly different fluid motions. 
This difference in flow characteristics demonstrates the need for a realistic assessment 
of the elastic properties of the deformable body before a particular theory is applied. 
The membrane squeeze-film theory presented in this work is the one most applicable 
to biological cells with easily deformable phospholipid bilayer membranes. 

A logical extension of this work would be to include relative translational motion 
between the planar surface and membrane-bound fluid-filled cell. This extension of 
the membrane squeeze-film theory may be applied to the problem of a red blood cell 
translating through a capillary. The problem of a large air bubble squeezing a fluid 
film adjacent to a rigid planar boundary inclined at an arbitrary angle, as the bubble 
slides up along the planar surface due to buoyancy, could also be treated by including 
translational motion. 

The membrane squeeze-film theory has shown the influence that the membrane 
boundary has on the pressure field developed in the fluid film (off-axis pressure 
maximum for short times and the pressure plateau for long times). The theoretical 
treatment of an assemblage of membrane-bound fluid-filled cells at very small poro- 
sities undergoing consolidation would have to consider this unusual flow behaviour in 
the determination of the local excess pore pressure. Laboratory experiments reported 
in Wu, Pfeffer & Weinbaum (1981) show that large departures from classical consoli- 
dation theory occur for void volumes less than 0.15. 

This work has been performed in partial fulfilment of the requirements for the Ph.D. 
degree of R. Wu from the School of Engineering of The City College of the City Uni- 
versity of New York. This research has been supported by NSF Grant ENG 78-22101 
and NIH Grant R01 HL19454. The study described herein was completed in the 
summer of 1980 and presented at the A.S.M.E. Winter Annual Meeting in Chicago, 
16-21 November 1980. An earlier version of this paper appearedin A.S.M.E.  Advances 
in Bioengineering, 1980. 

Addendum 
Subsequent to the completion of this paper the authors learned of an equivalent 

investigation performed by C. Y. Lin and J. C. Slattery at Northwestern University 
on the thinning of a liquid film as a drop or bubble coalesces at a solid boundary or 
a fluid-fluid interface (Lin & Slattery 1982). Although the governing equations and 
boundary conditions for the immobile (highly viscous) drop are the same as (2.20)- 
(2.23) in the present paper, the behaviour on the short timescale described herein is 
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fundamentally different from the droplet coalescence problem. This difference arises 
because of the different initial conditions for the two problems as described in the 
first footnote at  the beginning of Q 2. A small drop slowly settling under gravity toward 
a boundary or interface does not possess a short-time behaviour, since the fluid trapping 
occurs gradually and on a timescale comparable to the rest of the motion. In the 
numerical computations of Lin & Slattery the initial conditions are not an undeformed 
spherical drop, but a somewhat arbitrary initial condition that some time after the 
motion has started there is a time where the thinning rate of the film a t  its centre and 
its rim are equal, and at  this instant in time the thinning rate is independent of radial 
position. For the cell geometry examined in figure 5(b) of the present study one 
observes that this time occurs short,ly after T = 1.12 x 105 or the end of what we have 
called the fluid-trapping phase. The study of Lin & Slattery thus starts at  a time after 
the motions of principal interest in the present investigation have been completed. 
This includes the bidirectional fluid motion in the film, the establishment of the off-axis 
pressure maximum, the thickening of the film at  its origin and the initial formation of 
t,he edge region. The behaviour for T > 1-12 xlO5 is essentially identical with the 
computations of Lin & Slattery. 

Another point that needs to be emphasized is the relative magnitudes of the 
different time and space scales involved. The motion of interest in the present investi- 
gation occurs on a timescale two or more orders of magnitude shorter than the 
behaviour of interest in drop-coalescence studies. Similarly, the latter problem does 
not have narrow spatial regions with steep gradients. While a narrow gap does form 
in small-drop coalescence, the radial width of the gap is not small compared with the 
lengthscale of the inner region. A single uniformly valid numerical solution procedure 
could therefore be employed. In contrast, a more-elaborate two-region inner and outer 
numerical solution technique had to be employed in the present study since the edge 
region was confined to a small fraction of the near-contact area. In fact, the authors at 
the beginning of the present study attempted to use a single region numerical calcu- 
lation equivalent to that of Lin & Slattery but could not get the numerical finite- 
difference scheme to work. 
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